Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Spek, A. L. (1992). PLATON92. Program for the Generation and Analysis of Molecular and Geometric Data. University of Utrecht, The Netherlands.
Yersin, H., Huber, P. \& Wiedenhofer, H. (1994). Coord. Chem. Rev. 132, 35-42.

Acta Cryst. (1996). C52, 861-863

fac-Tricarbonyldichloro(tetrahydrofuran)ruthenium(II)

Gary M. Gray and Christina H. Duffey ${ }^{b}$
${ }^{a}$ The Department of Chemistry, The University of Alabama at Birmingham, 242-OB15 UAB Station, Birmingham, $A L$ 35294, USA, and ${ }^{b}$ The Department of Chemistry, Samford University, Birmingham, AL 35229, USA

(Received 7 August 1995; accepted 6 November 1995)

Abstract

In the fac- $\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{3}(\mathrm{thf})\right]$ complex, the Ru^{11} has slightly distorted octahedral coordination geometry with the carbonyl ligands in a facial arrangement and the thf trans to one of the carbonyls. The dihedral angle between the least-squares plane of the thf and the leastsquares plane through the four ligands cis to the thf is $90.56(23)^{\circ}$. The torsion angles about the $\mathrm{Ru}^{11}-\mathrm{O}$ (thf) bond indicate that the thf ring nearly bisects the angles between cis Cl and carbonyl ligands.

Comment

The complex, $f a c-\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{3}(\mathrm{thf})\right]$, (I), first reported in 1989 (Reddy, Whitten, Redmill, Varshney \& Gray, 1989), is a useful starting material for the synthesis of cis,cis,trans- $\left.\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{2} \text { (phosphine }\right)_{2}\right]$ complexes. This is particularly true for cis,cis,trans$\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{n} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}-P, P^{\prime}\right\}\right]$ metallacrown ethers because the preparation of these complexes requires the simultaneous addition of dilute solutions of $\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{3}(\mathrm{thf})\right]$ and the ligand (Gray, Varshney \& Duffey, 1995). Other Ru ${ }^{1 I}$ precursors are unsuitable for this reaction because they are generally polymeric and insoluble.

(I)

The fac- $\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{3}(\mathrm{thf})\right]$ complex was initially reported as $\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{3}\right] \cdot 0.75$ thf based on elemental analysis (Reddy, Whitten, Redmill, Varshney \& Gray, 1989). The fractional stoichiometry seemed unlikely, and one reason for obtaining a crystal structure of the complex was to determine the amount of thf present. Other points of interest in the crystal structure are the coordination geometry at the $\mathrm{Ru}^{\text {II }}$ center and the conformation of the thf ring.

An ORTEPII (Johnson, 1976) drawing of fac$\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{3}(\mathrm{thf})\right]$ is shown in Fig. 1. The coordination geometry of Ru is slightly distorted octahedral, as indicated by the dihedral angles between the three leastsquares planes through the Ru and the atoms coordinated to it ($90.7,89.4$ and 92.2°). The carbonyl ligands are in a facial arrangement and the thf is trans to one of the carbonyls. The thf ring ($\mathrm{O} 4, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6, \mathrm{C} 7$) has an envelope conformation with $04, \mathrm{C} 4, \mathrm{C} 5$ and C7 forming the base and C5, C6 and C7 forming the flap. The displacement ellipsoid of C7 of thf is elongated relative to this plane, suggesting that, as expected, the ring is conformationally flexible. The dihedral angles between the least-squares plane of the thf $(\mathrm{O} 4, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6, \mathrm{C} 7)$ and the least-squares planes containing the Ru , the thf O atom, one of the cis carbonyl C atoms, one of the cis Cl ligands and the trans carbonyl C atom ($\mathrm{Ru}, \mathrm{Cl1}$, $\mathrm{O} 4, \mathrm{C} 1, \mathrm{C} 335.0^{\circ}$; $\mathrm{Ru}, \mathrm{Cl} 2, \mathrm{O} 4, \mathrm{C} 2, \mathrm{C} 3127.2^{\circ}$) indicate that the thf experiences repulsive interactions with the ligands cis to it. This potential strain is relieved by a rotation of the thf around the $\mathrm{Ru}-\mathrm{O} 4$ bond to move C 4 into the space between Cl 2 and C 1 , and C 7 into the space between Cl 1 and C 2 . The dihedral angle between the least-squares plane of thf ($\mathrm{O} 4, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6, \mathrm{C} 7$) and that formed by the Ru , the two Cl ligands and the two cis carbonyl C atoms ($\mathrm{Ru}, \mathrm{Cl} 1, \mathrm{Cl} 2, \mathrm{Cl}, \mathrm{C} 2$) is 90.56°. This unusual arrangement is consistent with literature reports of other thf complexes (Sobota, Pluzinski, Utko \& Lis, 1988; Sobota, Utko \& Szafert, 1994).

Fig. 1. Drawing of the molecular structure of fac- $\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{3}(\mathrm{thf})\right]$. Displacement ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity.

Fig. 2. Drawing of the unit cell of $f a c-\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{3}(\right.$ thf $\left.)\right]$.

Experimental

Crystal data
$\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{3}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)\right]$
$M_{r}=328.12$
Monoclinic
$P 2_{1} / n$
$a=6.0904$ (9) \AA
$b=18.414$ (4) \AA
$c=9.940(2) \AA$
$\beta=96.999(12)^{\circ}$
$V=1106.5(4) \AA^{3}$
$Z=4$
$D_{x}=1.97 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
CAD-4 diffractometer $\omega / 2 \theta$ scans
Absorption correction: ψ scans (North, Phillips \& Mathews, 1968) $T_{\text {min }}=0.880, T_{\text {max }}=$ 0.999

3399 measured reflections
2618 independent reflections

Refinement

Refinement on F
$R=0.039$
$w R=0.048$
$S=1.022$
1591 reflections
152 parameters

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=13-17^{\circ}$
$\mu=1.863 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Plate
$0.46 \times 0.16 \times 0.055 \mathrm{~mm}$
Light yellow

1591 observed reflections

$$
[I \geq 3 \sigma(I)]
$$

$R_{\text {int }}=0.031$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-7 \rightarrow 1$
$k=0 \rightarrow 23$
$l=-12 \rightarrow 12$
3 standard reflections frequency: 120 min intensity decay: 0.3%
$\Delta \rho_{\text {max }}=0.521 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.400 \mathrm{e}^{-3}$
Extinction correction: Zachariasen (1968)
Extinction coefficient: 5.8363×10^{-8}

H atoms placed in calculated positions, riding on heavy atoms
$w=1 / \sigma^{2}\left(F_{o}\right)$
$(\Delta / \sigma)_{\max }<0.001$

Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}$
Ru	0.53801 (7)	0.16693 (3)	0.31093 (5)	2.144 (8)
Cl 1	0.2199 (3)	0.1072 (1)	0.3807 (2)	3.97 (4)
Cl 2	0.3519 (3)	0.18123 (9)	0.0865 (2)	3.55 (3)
O1	0.9091 (7)	0.2546 (3)	0.2156 (6)	4.3 (1)
O2	0.7658 (9)	0.1349 (3)	0.5940 (5)	4.7 (1)
O3	0.3417 (8)	0.3071 (3)	0.3933 (5)	4.0 (1)
O4	0.6508 (7)	0.0639 (2)	0.2453 (4)	3.06 (9)
C1	0.781 (1)	0.2189 (3)	0.2518 (7)	2.9 (1)
C2	0.687 (1)	0.1489 (3)	0.4891 (6)	2.9 (1)
C3	0.420 (I)	0.2548 (3)	0.3642 (7)	2.8 (1)
C4	0.770 (1)	0.0535 (4)	0.1293 (7)	3.7 (1)
C5	0.849 (1)	-0.0234 (4)	0.1386 (8)	4.6 (2)
C6	0.714 (1)	-0.0603 (4)	0.2354 (8)	4.5 (2)
C7	0.659 (2)	-0.0003 (4)	0.3233 (8)	5.9 (2)

Table 2. Selected geometric parameters (\AA, \circ)

$\mathrm{Ru}-\mathrm{Cll}$	2.402 (2)	O2-C2	1.124 (8)
$\mathrm{Ru}-\mathrm{Cl} 2$	2.390 (2)	$\mathrm{O} 3-\mathrm{C} 3$	1.127 (8)
$\mathrm{Ru}-\mathrm{O} 4$	2.146 (4)	$\mathrm{O} 4-\mathrm{C} 4$	1.448 (8)
$\mathrm{Ru}-\mathrm{Cl}$	1.916 (6)	O4-C7	1.411 (9)
$\mathrm{Ru}-\mathrm{C} 2$	1.918 (6)	C4-C5	1.49 (1)
$\mathrm{Ru}-\mathrm{C} 3$	1.873 (6)	C5-C6	1.50 (1)
$\mathrm{Ol}-\mathrm{Cl}$	1.111 (8)	C6-C7	1.48 (1)
$\mathrm{Cl} 1-\mathrm{Ru}-\mathrm{O} 4$	89.0 (1)	$\mathrm{C} 2-\mathrm{Ru}-\mathrm{C} 3$	92.5 (3)
$\mathrm{Cll}-\mathrm{Ru}-\mathrm{Cl}$	176.9 (2)	$\mathrm{Ru}-\mathrm{O} 4-\mathrm{C4}$	124.7 (4)
$\mathrm{ClI}-\mathrm{Ru}-\mathrm{C} 2$	87.8 (2)	$\mathrm{Ru}-\mathrm{O4}-\mathrm{C} 7$	124.3 (4)
$\mathrm{Cll}-\mathrm{Ru}-\mathrm{C} 3$	87.9 (2)	C4-O4-C7	109.9 (5)
$\mathrm{Cl} 2-\mathrm{Ru}-\mathrm{O} 4$	86.9 (1)	$\mathrm{Ru}-\mathrm{Cl}-\mathrm{Ol}$	173.2 (6)
$\mathrm{Cl} 2-\mathrm{Ru}-\mathrm{Cl}$	87.4 (2)	$\mathrm{Ru}-\mathrm{C} 2-\mathrm{O} 2$	175.9 (6)
$\mathrm{Cl} 2-\mathrm{Ru}-\mathrm{C} 2$	176.4 (2)	$\mathrm{Ru}-\mathrm{C} 3-\mathrm{O} 3$	177.5 (5)
$\mathrm{Cl} 2-\mathrm{Ru}-\mathrm{C} 3$	90.8 (2)	O4-C4-C5	105.4 (5)
$\mathrm{O} 4-\mathrm{Ru}-\mathrm{Cl}$	93.5 (2)	C4-C5-C6	105.7 (6)
$\mathrm{O} 4-\mathrm{Ru}-\mathrm{C} 2$	89.7 (2)	C5-C6-C7	102.9 (6)
$\mathrm{O} 4-\mathrm{Ru}-\mathrm{C} 3$	176.1 (2)	$\mathrm{O} 4-\mathrm{C} 7-\mathrm{C} 6$	107.3 (6)
$\mathrm{Cl}-\mathrm{Ru}-\mathrm{C} 2$	94.2 (3)		
$\mathrm{Cl1}-\mathrm{Ru}-\mathrm{O} 4-\mathrm{C4}$	145.8 (5)	$\mathrm{Ru}-\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 5$	169.8 (4)
$\mathrm{ClI}-\mathrm{Ru}-\mathrm{O} 4-\mathrm{C} 7$	-47.5 (6)	C7-O4-C4-C5	1.4 (7)
$\mathrm{Cl} 2-\mathrm{Ru}-\mathrm{O} 4-\mathrm{C} 4$	55.0 (4)	$\mathrm{Ru}-\mathrm{O} 4-\mathrm{C} 7-\mathrm{C} 6$	172.0 (5)
$\mathrm{Cl} 2-\mathrm{Ru}-\mathrm{O} 4-\mathrm{C} 7$	-138.3 (5)	C4-O4-C7-C6	-19.6 (8)
$\mathrm{C1}-\mathrm{Ru}-\mathrm{O} 4-\mathrm{C} 4$	-32.3 (5)	O4-C4-C5-C6	16.8 (7)
$\mathrm{Cl}-\mathrm{Ru}-\mathrm{O} 4-\mathrm{C} 7$	1.34 .5 (6)	C4-C5-C6-C7	-27.8 (8)
$\mathrm{C} 2-\mathrm{Ru}-\mathrm{O} 4-\mathrm{C} 4$	-126.5 (5)	C5-C6-C7-O4	29.1 (8)
C2-Ru-O4-C7	40.3 (6)		

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Program(s) used to solve structure: MolEN (Fair, 1990). Program(s) used to refine structure:
MolEN. Molecular graphics: ORTEPII (Johnson, 1976).
CHD wishes to thank the US Department of Education for a GAANN fellowship.

[^0]
References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Gray, G. M., Varshney, A. \& Duffey, C. H. (1995). Organometallics, 14, 238-244.
Johnson. C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Reddy, V. V. S., Whitten, J. E., Redmill, K. A., Varshney, A. \& Gray, G. M. (1989). J. Organomet. Chem. 372, 207-216.

Sobota, P., Pluzinski, T., Utko, J. \& Lis, T. (1988). Inorg. Chem. 28, 2217-2219.
Sobota, P., Utko, J. \& Szafert, S. (1994). Inorg. Chem. 33, 5203-5206. Zachariasen, W. H. (1968). Acta Crụst. A24, 212-216.

Acta Cryst. (1996). C52, 863-865

Tetraphenylphosphonium trans-Aquatetrabromo(carbonyl)osmate(III), trans$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{P}\right]\left[\mathrm{OsBr}_{4}(\mathrm{CO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$

Matthias Höhling and Wihelm Preetz
Institut für Anorganische Chemie, Universität Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany. E-mail:
sunac024@talos.ac.uni-kiel.de

(Received 15 September 1995; accepted 13 October 1995)

Abstract

The X-ray structure determination of tetraphenylphosphonium trans-aquatetrabromo(carbonyl)osmate(III), trans- $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{P}\right]\left[\mathrm{OsBr}_{4}(\mathrm{CO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, at 293 K has revealed slightly distorted octahedral coordination of the osmium(III) atom, with $\mathrm{H}_{2} \mathrm{O}$ trans to the almost linear carbonyl group. The distances are 1.795 (10) for Os-C, 2.181 (6) for $\mathrm{Os}-\mathrm{O} w$ and 1.164 (9) \AA for $\mathrm{C}-\mathrm{O}$; among the $\mathrm{Os}-\mathrm{Br}$ bond lengths two are shorter [2.4692 (8) and $2.4753(10) \AA$] and two are longer [2.5042 (8) and 2.5072 (8) \AA]. Centrosymmetric dimers of the complex anions are formed by intermolecular hydrogen bonding between the coordinated water molecule and the two Br ligands that form longer bonds to the central atom.

Comment

We are currently studying the mutual influences of different ligands in octahedral complexes on their spectroscopic and structural properties. The halogenocarbonyl compounds of osmium(III) of the types $\left[\mathrm{Os} X_{5}(\mathrm{CO})\right]^{2-}(X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ and trans-[Os $\left.X_{4}(\mathrm{CO})_{2}\right]^{-}$ ($X=\mathrm{Br}, \mathrm{I}$) have been synthesized and well charac-
terized by vibrational spectroscopy (Cleare \& Griffith, 1970; Johannsen \& Preetz, 1977a) and in some cases by X-ray structure determination (Berngardt et al., 1993a,b, 1994). The related aqua complexes of the type trans- $\left[\mathrm{Os} X_{4}(\mathrm{CO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{-}$are formed by hydrolysis of the monocarbonylates (Johannsen \& Preetz, 1977b; Bottomley, Lin \& White, 1978). The substitution of the Br ligand trans to CO causes a shift of the carbonyl stretching frequency from 1949 to $1989 \mathrm{~cm}^{-1}(10 \mathrm{~K}$, KBr disc) in the title compound, (1).

(1)
(1) crystallizes in space group $P \overline{1}$ with all atoms located in general positions. The complex anion, which is represented in Fig. 1 with its labelling scheme, has almost $m m 4\left(C_{41}\right)$ local symmetry.

Fig. 1. View of the trans- $\left[\mathrm{OsBr}_{4}(\mathrm{CO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{-}$anion showing 50% probability ellipsoids. H atoms are drawn as spheres of arbitrary size.

The Os-C distance in (1) of $1.795(10) \AA$ is slightly shorter than that in $\mathrm{K}_{2}\left[\mathrm{OsBr}_{5}(\mathrm{CO})\right]$, (2) [1.84 (2) \AA; Berngardt et al., 1994], and significantly shorter than those in trans- $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)\left[\mathrm{OsBr}_{4}(\mathrm{CO})_{2}\right]$, (3) $[1.90(3)$ and 1.91 (4) \AA; Berngardt et al., 1993a]. On the other hand, the Os-O w distance $[2.181(6) \AA$] in (1) is somewhat longer than the sum of the covalent radii of osmium and oxygen ($2.03 \AA$; Pauling, 1960). These results are consistent with a decreasing trans influence of the ligands in the order $\mathrm{CO}>\mathrm{Br}>\mathrm{H}_{2} \mathrm{O}$. The effect on the $\mathrm{C}-\mathrm{O}$ distances [1.164 (9) in (1), 1.16 (3) in (2), and 1.14 (4) and 1.21 (4) \AA in (3)] is uncertain, due to lower accuracy of determination. The OsC , $\mathrm{Os}-\mathrm{O} w$ and $\mathrm{C}-\mathrm{O}$ distances in (1) are in good agreement with the corresponding averaged distances in trans- $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{P}\right]\left[\mathrm{OsCl}_{4}(\mathrm{CO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, (4) $(2.19,1.81$ and 1.16 A; Gorbunova et al., 1994), and the carbonyl stretching frequencies are virtually equal [1987 in (4),

[^0]: Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: BK1187). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square. Chester CHI 2HU, England.

